
i

_

w

/l l -,!£. 7 i_.

_D 7s2....i

Distributed and Parallel Ada and the
A da 9X Recommendations

....... _.<_
(NASA-CR-I90392) DISTRIBUTED AND PARALLEL N92-26199
Ada AND THE Ada 9X RECOMMENOATIONS

(Research Inst. for Computing and

Information Systems) 28 p Unclas

GS/6Z oo96_sz
Richard A. Volz

Stephen J. Goldsack
R. Theriault

Raymond S. Waldrop
A.A. Holzbacher-Valero

= _

i

Texas A&M University

Imperial College of London

.. April 1992

Cooperative Agreement NCC 9-16
Research Activity No. SE.35
Deliverable Task R5B Report

............ NASA Johnson Space Center
Engineering Directorate

Flight Data Systems Division

Research Institute for Computing and Information Systems

University of Houston-Clear Lake

I

...TECHNICAL REPORT

_.j, -

. L

The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and info_a_on Systems (RICIS} in 1986 to encourage the NASA

Johnson Space CEnter {JSC} and local industry to actively support research

in the computing _d information sciences. As part of this endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research _ advanced data processing technology needed for JSC's

main missions, inciud_g administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCLbe_g in May 1986, to Jointly plan and execute such research

through RIC!S, Additionally, under Cooperative Agreement NCC 9-16,

computing and educational faciliUes are shared by the two insUtutlons to
conduct the research.

The UHCL/RIC!S mission is to conduct, coordinate, and disseminate research

and professional level edueaUon in computing and information systems to

serve the needs of the government, industry, community and academia.

RICIS combines re_urces of UHCL and its gateway affiliates to research and

develop nmtcrials, prototypes and publicaUons on topics of mutual interest

to its sponsors and researchers. Within UHCL, the mission is being

implemented through In_rdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sclences _d Humanities, and Natural and Applied Sciences.

RICIS also collaborates wlth industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry.

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addl-

tional sources of expense to conduct needed research. For example, UHCL

has entered into a Special partnership with Texas A&M University to help

oversee RICIS re_h an-l education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates

technical resulta __the goals of UHCL, NASA/JSC and industry.

u

y

J

u

u

m

Em

w

W_

= .

zr

w

w

Distributed and Parallel Ada and the
Ada 9X Recommendations

ir

m

w

=

m

RICIS Preface

This research was conducted under auspices of the Research Institute for Computing

and Information Systems by Richard A. Volz, R. Theriault and Raymond S.

Waldrop of Texas A&M University and Stephen J. Goldsack and A. A. Holzbacher-

Valero of Imperial College, London, England. Dr. E.T. Dickerson served as RICIS
research coordinator.

Funding was provided by the Engineering Directorate, NASA/JSC through

Cooperative Agreement NCC 9-16 between the NASA Johnson Space Center and the

University of Houston-Clear Lake. The NASA technical monitor for this activity

was Terry D. Humphrey of the Systems Software Section, Flight Data Systems

Division, Engineering Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors and

should not be interpreted as representative of the official policies, either express or

implied, of UHCL, RICIS, NASA or the United States Government.

,,..-.

w

w

w

Distributed and Parallel Ada and the
Ada 9X Recommendations

Task R5B Report

NASA Subcontract #074
Cooperative Agreement NCC-9-16

Research Activity # SE.35

Period of Performance: May 1, 1990 - September 30, 1992

!

r -

= =

W

Submitted to
RICIS

Submitted by
R. Volz, Texas A&M University

S. J. Goldsack, Imperial College, London, England
R. Theriault, Texas A&M University
R. Waldrop, Texas A&M University

A. A. Holzbacher-Valero, Imperial College, London, England

L_

/\
\

\

=

w

===_

w

m

w

= =

m

w

Distributed and Parallel Ada and the
Ada 9X Recommendations I

by

Richard A. Volz 2

Stephen J. Goldsack a

Ronald Theriault 4

Raymond Waldrop _

Alexandra A. Holzbacher-Valero t;

1 Introduction

The Ada programming language was developed around 1980 to become the standard

language for use in the field of embedded computer systems, particularly in work

for the United States Department of Defense. The ISO standard version of the lan-

guage was established in 1983, and is commonly referred to as Ada83. This language

provided no special features to support the construction of distributed systems, and

much research has been devoted to finding suitable ways of writing such programs in

the language. Recently, the DoD has sponsored work towards a new version of Ada

intended to overcome some of the recognized shortcomings of Ada83. The revised

version, often called Ada9x[1], will become the new standard sometime in the 1990s.

It is intended that Ada9x should provide language features giving limited support for

distributed system construction. The present paper will review the requirements for

such features, especially in the light of the the Ada9x mapping proposals published

in August 1991.

Many of the most advanced computer applications involve embedded systems that

are comprised of parallel processors or networks of distributed computers. If Ada is to

become the widely adopted language envisioned by many, it is essential that suitable

compilers and tools be available to facilitate the creation of distributed and parallel

Ada programs for these applications. Given the "no supersets, no subsets" philosophy

of Ada, the creation of these tools poses some challenging problems.

It has been argued [2] that matters of distribution depend upon the architecture of

the system. [3] carries this a step further and argues that any parallel or distributed

system is comprised of a set of memories and a set of processors, and that it is ap-

propriate to partition the system by the subsets of processors sharing each memory.

IThis work was supported by NASA under Cooperative Agreement number NCC-9-16 and by
Telesoft under Contract number 91-573

-"The Computer Science Department, Texas A&M University

almperial College of London
4The Computer Science Department, Texas A&M University

5The Computer Science Department, Texas A&M University
6Imperial College of London

w

v

--=

=

u

u

=
i

w

Accordingly, when we use the term"processor:' in this document, we actually mean

the set (possibly singleton) of processors sharing some common memory. Further, [3]

argues that the present Ada tasks are the natural unit of distribution among pro-

cessors sharing the same memory, but that extended considerations are necessary for

finn-shared memory. We thus focus this study on non-shared memory distributed and

parallel computer systems, as extensions to shared memory (sub)systems is relatively

straightforward.

In particular, we discuss the major issues that must be resolved and describe

alternative solutions. It is our intent to concentrate on the high level issues and

decisions that must be made, not to trace out any one possible solution in complete

detail. However, enough detail is provided so that it should be possible for an informed

reader to synthesize the various specific solutions.

We are specifically interested in reconciling alternative techniques for distributed

and parallel programming with the draft proposals for Ada 9X. It is our suggestion

that an extended typing model provides a consistent framework within which to de-

velop Ada to support distributed and parallel systems. Further, through replication

(controlled through a configuration tool external to the language itself) of appropri-

ately restricted units presently in Ada, e.g., Pure packages of Ada 9X [1], reasonable

distributed and parallel extensions can be created without introducing new typing

syntax into the language. It is only necessary that replication of suitable units be al-

lowed. We find that with a little tuning (principally permitting replication of Remote

Call Interface packages and/or remote calls to pure packages), the Active Partitions

proposed in the August, 1991 draft Mapping Specification can provide a base upon

which reasonable solutions can be developed. The proposal for parallel tasks, however,
is less clear.

While we explicitly consider only homogeneous systems here, many of the tech-

niques used apply equally well to heterogeneous systems. For a more complete treat-

ment of heterogeneous systems, see [4].

In the following sections, we introduce the major issues, discuss alternative strate-

gies for developing distributed and parallel Ada, and make a set of recommendations

for minor modifications to Ada 9X we believe would better support distributed and

parallel computation.

2 Issues and Discussion

2.1 Basic Capabilities Required

First, we examine the similarities and differences between distributed and non-shared

memory parallel processing systems and argue that the same language capabilities
are needed for both.

One usually interprets the term "distributed system" to mean a modest (typi-

cally two or three up to a few dozen) set of loosely coupled processors that may be

either homogeneous or heterogeneous. Non-shared memory parallel computers, on

=

w

A .

L

the other hand, typically have 100's to 1000's of homogeneous processors. Moreover,

this number may change in different runs of the program, possibly dynamically. One

often (not necessarily correctly) assumes that the processors in a distributed system

are likely to be doing fundamentally different things, whereas many, if not all, of the

processors in a parallel computer are doing very similar things. Perhaps as a result of

these differences, distribution has sometimes been thought of in terms of distributing

different elements of a program without replication of any units, while parallelism has

been thought of in terms of replicating some elements of a program. We shall argue

that both distributed and parallel systems need both capabilities.

For parallel machines, it unreasonable for the programmer to have to explicitly

create 100's or 1000's of units to be placed on the different processors. This implies

that some form of typing construct, or replication, must be available from which

[indexed] instances of some unit of code can be created on different processors. These

instances must be callable from remote processors. However, one of the principal

advantages of Multiple-Instruction-Multiple-Data (MIMD) machines is that one does

not need to perform the same functions on every processor. Some method is needed

to distribute these functions among the processors of the machine.

For distributed systems, on the other hand, some have put forth distribution

mechanisms without a typing or replication capability. We believe, nevertheless, that

some form of typing construct or replication of the units of distribution is needed.

Indeed, we believe that two different forms of replication are needed. Reasons for

replication appear frequently in the real world - objects modelled or controlled are

replicated, e.g., bank tills in a banking system, check-out stations in a supermarket,

multiple elevators in a building. Thus, embedded systems need replication.

The first form of replication needed is for local (to a given processor) use of a

common utility, and does not involve remote calls to the replicated units. Servers

such as TEXT_IO, CLOCK and math packages are examples of entities that may

well be needed on different processors in the system. Each processor would have its

own version.

The second form of replication is of the remotely callable functions being dis-

tributed. This may be necessary either because several processors are performing the

same function with different external devices or data, or for fault tolerance reasons.

For example, one distributed system under study has 20 identical operator consoles,

executing identical code, but with different inputs from 20 different operators[5]. It

is important that the instances of replication should be indexable in some way, and

not be required to all have distinct non-indexed names.

Related to the need for replication, is a need for what may be described as poly-

morphic units. The word is taken from the terminology of object oriented systems,

though the full power of polymorphic classes is perhaps not required here. What is

needed is the possibility of creating units whose interfaces with the rest of the system

are replicated, but whose implementations may be different. These should be capable

of being substituted for each other in the system construction or during system exe-

cution. The purpose of this facility is to allow flexible replacement of software when

u

=

!

u

hardware is changed in some way. The commonly mentioned example for this need

is in connection with mode switches in fault tolerant systems, when recovery from

an error situation following loss of some hardware may need a switch to a control

strategy which is less expensive in processor cycles. However, the same facility would

be needed in other situations. For example, a cash till in a banking system might be

replaced by one of a different manufacture, providing the same facilities but requiring

different algorithms for its control. Indexed sets of such units should be capable of

being constructed from a mixture of the different versions.

\Ve thus believe that the same capabilities must be provided for both distributed

systems and non-shared memory parallel computers.

From this, one can derive a basic core of capabilities that must be provided in any

system supporting distributed and/or parallel computation.

1. A mechanism to make data types visible to each of a multiplicity of processors

so that arguments can be passed in remote calls.

"2. A way of creating multiple instances of servers on the different processors that

are not intended to be called remotely on different processors. Math packages

and TEXT_IO are examples of this case.

3. A technique for Creating multiple instances of remotely callable units on differ-

ent processors.

4. A means of assigning of remotely callable units to specific [logical] processors

in the system.

5. A facility to replace remotely callable units by alternative versions with the

same interfaces, but having different implementations.

In addition, certain forms of parallel operations have also been suggested as a basic

requirement[I]. In particular, a capability for parallel creation of multiple instances

of program entities, e.g., tasks, has been identified. This, in turn, would seem to

require some form of broadcast communications capability.

We take these capabilities as the fundamental requirements for distributed and/or

parallel Ada. The most basic problem that must be resolved is the identification of

the sort (or sorts) of unit of distribution to be used and the rules/conventions that

surround its, or their, use.

w

- °

2.2 Underlying Considerations

Before delving into specific alternatives for distribution and parallel computation, it

is useful to briefly review issues discovered in various experimental distributed Ada

systems built over the past few years, e.g. [2], that must be addressed. In describing

these issues, we do not assume any specific unit of distribution. Instead we introduce

l

= =

=

v

w

r_

E .
m

the term par_unit to identify the unit of distribution. We do not treat a par_unit as

a prescribed language element at this point. Rather, we allow it to take on different

characteristics and evaluate the consequences. In particular, we consider both task-

like and package-like characteristics, as both tasks and packages have been suggested

as the basis for distribution and parallelization. Also, in view of the discussion in the

previous section, we keep in mind the need to replicate par_units in some way. Use of

a type together with the allocator would provide a nice way to accomplish replication

that is consistent with current mechanisms in the language. However, other forms of

replication may be preferred if par_units are allowed at the library level.

We will consider the par_unit to have a specification and a body. The specifica-

tion will present a remotely visible interface, and will include the remotely callable,

accessible or visible entities in the par_unit.

Specific issues of concern are:

A void redundant state: Maintaining consistency would be unreasonably difficult.

This issue can arise if unrestricted replication of certain choices for a par_unit

is permitted.

• Avoid remote timed task entry calls: As no system wide sense of time is defined,

remote entry calls are not well defined [6].

Passing access variables as arguments in remote calls: As presently defined, ac-

cess variables have no meaning except on the machine upon which they received

their values. While it is not difficult to create a record containing a machine

(and possibly port) identifier as well as a local access value, this would either

require a generalized implementation of operations on access variables or disci-

plined use of access variables, i.e., ensuring that they are only dereferenced on

the machine on which they have meaning.

• Avoid passing task objects as arguments in remote calls: A task object evaluated

on one machine has no meaning on a different machine.

Avoid hidden remote references: This problem arises when instances of unre-

stricted task type definitions are created on machines remote from the one on

which the type definition resides. The example below in which we take par_unit

types to be task types illustrates the problem.

HIDDEN REMOTE REFERENCES

E-

J

Site 1

with B;

package A is

TI: B.T;

5

Site 2

package B is

task type T is ...

end T;

k_

-.R

L

w

end A; end B;

package body B is

X • INTEGER;

task body T is

begin

X:--...;

end T;

end B;

Each instance of task type T will make a reference to the variable X. If the in-

stance was created on a machine different from that on which the type definition

resides, this reference will be remote, and will not be visible to the user. This

problem also arises in the object oriented world if there are class variables (i.e.

variables shared by all instances of a class) as well as instance variables, repli-

cated with each instance. SmallTalk has them, and Eiffel allows only read only

access to them, so they are really (usually remote) functions, while Dragoon

has no class variables. Par_units should be constructed to avoid this problem.

It is one of the most serious problems that must be addressed.

Data types defined within par_units: If a par_unit is allowed to have types in

its specification, two kinds of issues arise.

- For each of the three kinds of operations on instances of the types de-

fined within a par_unit, basic, implicit and user defined, one must decide

whether to replicate the operation on each site using the type or make

make remote calls to the operation. A compromise is to replicate the

basic and implicit operations, and make user defined operations remotely

callable. However, this means that the operations on a type are not treated

consistently. Further, if they have side effects, then they all must be re-

motely called. If they are pure procedures or functions this compromise is

workable.

The second issue arises when one considers creation of multiple instances of

a par_unit. A "types within types" problem then arises. In particular, the

types declared within different instances of the par_unit are presumably

different since the instances are different. At a minimum, this, in turn, ne-

cessitates dynamic type checking, which creates a difficult implementation

issue or use of type conversion.

However, if Ada 9X tagged types are used as parameters in remote calls to

a par_unit a problem arises with the distinctness of types in the multiple

=

= =

W

w

qt=,

instances of included normal packages. This is illustrated in the example

shown below r. In this case Pure and Remote Call Interface Packages of

Ada 9X are used for distribution in a manner requiring replication of both

Pure and normal packages "'withed" by an RCI package. The problem

arises because Ada 9X permits the passing of actual parameters that are

extensions (defined in an included normal package) of the formal types

given in the subprogram specification. When such a parameter is passed

down to an instance of a normal package, the type extension defined in the

receiving subprogram should, theoretically, be distinct from that defined

in the instance creating the parameter, and a type mismatch will occur.

package PURE_PKG is

pragma PURE;

type ROOT_TYPE is tagged ...;

- - Primitive dispatching operations ...

end PURE_PKG;

with PURE_PKG;

package RCI_PKG is

pragma REMOTE_CALL_INTERFACE;

procedure CLASS_WIDE_OP(CW_FORMAL

: in PURE_PKG.ROOT_TYPE'CLASS);

- - Note: class-wide nondispatching remote operation

end RCI_PKG;

with PURE_PKG;

package NORMAL_PKG is

type SPECIFIC_TYPE is new PURE_PKG.ROOT_TYPE ...;

- - Note: must be derived at the same scope level

procedure P(ST_FORMAL: in SPECIFIC_TYPE);

end NORMAL_PKG;

with NORMAL_PKG;

package body RCI_PKG is

procedure CLASS_WIDE_OP(CW_FORMAL : PURE_PKG.ROOT_TYPE'CLASS) i,

begin

NORMAL_PKG.P(CW_FORMAL);

end CLASS_WI:DE_OP;

rThis example is courtesy of Anthony Gargaro.

L

L_

w

end RCI_PKG;

with NORMAL_PKG, RCI_PKG:

- - Assume post-compilation partitioning creates this partition

- - and it is different from the partition holding RCI_PKG.

procedure CLIENT_PTN is
CLIENT_PTN.ACTUAL : NORMAL_PKG.SPECIFIC_TYPE := ...;

begin

RC I_P KG. CLASS_WIDE_O P (CLIENT_PTN. ACTUA L);

- - Remote call to RCI_PKG. Note that the parameter will be passed to the

- - instance of NORMAL_PKG included with RCI_PKG, which is different from

- - the instance included with CLIENT_PTN. If the types of different instances

- - of NORMAL_PKG are different there is a type mismatch when RCI_PKG calls

-- NORMAL_PKC.P.

end CLIENT_PTN;

- - Post-Compilation Partitioning- illustrative syntax:

PARTITION (PTN => l, CLOSURE => (CLIENT_PTN))

PARTITION (PTN => '2, CLOSURE => (RCI_PKG))

- - Note: A distinct instance of NORMAL_PKG is included in each partition

• Minimize task and program termination problems: [2] describes task termination

difficulties that can arise with unrestricted use of tasks.

m

w

w

3 Solution Concepts

In this section, we discuss alternative solution concepts for the basic capabilities

identified earlier, and evaluate them with respect to the issues identified above.

3.1 Type Sharing

There has been fairly wide agreement on one method of achieving type sharing.

Package-like units which have type declarations but no variable state are defined.

They can then be replicated on each processor/memory system using the types they

define, with the effect of having a single instance of the unit. Various forms of such

units have been called templates, publics, pure packages or constant state

packages by various investigators. For convenience, we will refer to units of this

type as type_units.

The "types within types" problem can be avoided here by ensuring that, from

the perspective of the program, there is semantically only a single instance of each

defined type_units, and that its replication is only an operational optimization to

=

w

w

m

.,.,..

reduce communication times. The difficulty that must be surmounted is the idea that

a constructor function can determine where the state of a type instance is stored, and

that the replicated units would place such storage on the machine on which they

execute. The ensuing problems can be avoided by disallowing of access variables

pointing to instances of types defined within the type_unit as parameters in remote

procedure calls.

One important issue that has been treated differently in the variations of this

approach, though, is the presence or absence of task types. They are disallowed

in publics[7] but allowed in Ada 9X pure packages. The possible advantages of

including them are discussed more conveniently later. However, if they are permitted,

it is necessary' to disallow passing task objects as parameters on remote calls, and this

would seem to require more complex checking than prohibiting them altogether.

It should be noted that the August 1991 version of Ada 9x also allows type sharing

through placement of type declarations in the specification of a Remote Call Interface

(RCI) package. This is needed to have private types. Furthermore, RCI packages may
have state.

3.2 Assignment of Callable Units to Processors

There are several considerations in assignment of callable units to processors:

• Configuration of the program, i.e., the logical division of the program into parts

to be executed on different machines.

Automatic management of communication routines. That is, calls to remote

subprograms must be replaced with communication stubs, and the communica-

tion routines must automatically be supplied.

• Assignment of units to specific hardware.

A number of different approaches have been taken in addressing these problems.

The details of the different approaches depend, to some extent, on the specific kind

of unit of distribution with which they are dealing. However, certain general charac-

teristics are more or less independent of the unit of distribution. These alternative

approaches are:

• Develop the program for a virtual computer and use a post-processing tool to

assign different parts of the program to different [logical] machines[8].

• Use pragmas to identify the units to be distributed and the [logical] processors

to which they are assigned[9].

• Use configuration tool that can specify the [logical] distribution of the program

as part of the high level program design[10].

• Incorporate explicit, user written, [logical] assignment statements within the

program itself[7].

L .

!

= =

• Embed algorithms for automatically performing the [logical] assignment in the

compiler.

• Perform logical machine to physical machine assignment at the time the program

is loaded[9].

• DRAGOON takes the object oriented view to its logical conclusion in which the

complete program is an object configured from others in a consistent way.

Combinations of these can be used. As several methods of accomplishing the assign-

ment to specific machines exist, this requirement will not be considered further here.

Any of several methods will suffice.

3.3 "Local" Replication of Units

:ks noted above, it is useful to be able to create local instances of various servers,

such as TEXT_IO and math packages, on the individual processors of a distributed

or parallel computer system. In the case we consider in this section, we assume there

are no remote references to such servers. The need for replication in this case differs

from that for type_unlts in that the replicated units under discussion here may have

variable state. We use the term "local replication" to describe the process of creating

instances of such server units on the processors on which they are needed. Since locally

replicated units are not remotely callable, they must appear in the context clauses

of remotely callable par_units. Library packages and subprograms are appropriate

units for local replication.

The ideas of local replication have appeared in both AdaPT [7] and in Ada 9X

(per-partition packages) [1]. It is generally agreed that: 1) each instance of the

replicated unit should be a distinct copy of the defined unit, 2) each instance of state

associated with a replicated unit should be separate and distinct from all others,

and, 3) there should be no attempt to maintain state consistency. These effects

are obtained in object oriented languages (e.g. DRAGOON) by having an instance

variable of the shared class instantiated in each instance of the class. If they are

shared, then the instance variables are assigned a common value, which, of course,

creates a consistency problem in the distributed case.

The matter of types within locally replicated units is less clear. Ostensibly, there

is the "types within types" problem identified earlier. Were it not for the tagged types

proposed for Ada 9X, however, the problem would be moot. Except for tagged types,

there can be no mixing of the different instances of the data types defined in the

unit since locally replicated units cannot be referenced from without the processor

on which they reside and scope rules thus prevent passing objects of types in one

instance to another.

There is, however, the types within types issue when tagged types are consid-

ered. If the types within different instances of a locally replicated unit (on different

machines) are distinct, then the problem illustrated earlier with passing parameters

of a tagged type arises. The August 1991 Ada 9X Mapping Specification resolves

10

m

7_

F

= :

w

m

m

this problem by' decreeing that the types within different instances of per-partition

packages are the same (while state within these same different instances is distinct).

This, we believe, is inconsistent with the notion that the replicated instances are

distinct, and we recommend a different approach. We recommend that either the

passing of tagged types as parameters in remote procedure calls be disallowed, or

that only tagged types declared in a type_unit be allowed as parameters (i.e., no

'CLASS formal types), and that the copy of the actual parameter have all extensions

to the formal type "stripped off." Either choice prevents an object of a tagged type

extended from a type declared in a type_unit from reaching a different instance of

the same base unit.

With our suggested approach, there is an interpretation of local replication that

fits nicely into the Ada philosophy. Locally replicated units are essentially instances of

anonymous package or subprogram types. There is no need to develop any new typing

mechanism for specifying "'locally" replicable" units, however. If they are included in

the context clauses of the remotely callable par_units that need them, they can be

automatically included where needed as linked executable objects are produced for

each machine of the system.

3.4 Remotely Callable Replication

In this case, it is desirable to be able to name the instances of replication, create

structures containing them (or pointers to them) and, at least locally, pass them (or

pointers to them) as parameters. It is also essential that the units have, or be able

to create, one or more threads of control.

There have been a number of proposals for resolving this issue, though there is

as yet no widely accepted agreement on the best approach. Package types have been

suggested for this purpose [11, 2]. Partitions and nodes were suggested in AdaPT [7].

DRAGOON uses class instances (which really influenced the proposal for AdaPT).

The August, 1991 Ada 9X Mapping Specification [1] included a parameter in task

types so that each task could be given an identity as it is created; it was intended that

compilers be allowed to distribute an array of tasks across a set of parallel processors.

Additionally, the draft Ada 9X document proposes Active Partitions, accessible via

Remote Call Interface (RCIs) packages for distributed processing. Duplication of

RCIs (not presently allowed in Ada 9x) would be an additional form of replication.

And, most recently, [12] has suggested an abstract data type (ADT) model in which

replication of a remotely callable suitably formed type_unit permits a realization of

the AdaPT model within Ada83 or Ada 9X.

In order to not pre-judge a solution, we will again use the term par_unit to

name the unit whose instances are to be replicated on different processors. We will

consider different possible characteristics of par_units that would make them useful

for distribution and parallel computation. At times, we will consider the consequences

of having them resemble tasks. At other times, we will consider the consequences of

having them resemble packages, or the partitions of AdaPT [7]. At all times, though,

we will consider that par_units must actually be, or represent, types.

11

L

2 :

r_

There are at least three different bases upon which par_units can be developed:

1. par_unit types appear at the library level,

2. par_unit types are embedded within the definition of some other unit, as are

tasks and.

3. par_units are are implemented as Abstract Data Types (ADTs).

For each of these choices, it is necessary to consider the conditions that further refine

the definition of a par_unit.

3.4.1 Library Level Par_units

In this case, par_unit definitions resemble package or subprogram definitions con-

strained in appropriate ways (to be discussed below), with the major modification

that we wish to create multiple instances of them. Since the normal Ada mecha-

nism for creating instances of things is based upon types, we should thus think of

a par_unit definition as a type definition. Even if we do not formally introduce a

typing syntax into the language, but instead use some form of configuration control

to achieve multiple instances of par_units, it is useful to recognize that conceptually

we are dealing with types.

The major issues to be considered in this case are:

• Types required by the par_unit itself

• Context of the par_unit

• State of the par_unit

• Creation and naming of the instances

If one is willing to disallow private types in the specification of a library level

par_unit, one can avoid allowing types in a par_unit specification altogether by

placing the visible types needed in some form of type_unit. The prohibition of data

types in par_unit specifications eliminates the types within types problem. The

prohibition of task types eliminates part of the hidden remote reference problem.

To eliminate other forms of hidden remote references, generic definitions within the

specification of a par_unit should also be prohibited. Task declarations should be

disallowed to prevent remote timed entry calls. The effect of normal entry calls is

easily obtained by having visible procedures make calls to tasks defined in the body

of a par_unit.

The context clause of a par_unit should only reference whatever form of type_unit

is adopted. Further discussion on possible conditions for par_unit may be found un-

der the heading of partitions in [7] and Segment Interface Packages in [13]. The

body of the par_unit, however, may include normal packages and subprograms in its

context.

12

*._.._

= =

H
m

Each instance of a par_unit should be be distinct, i.e., the state in one instance is

distinct from that in another. Any normal packages or subprograms included by the

body of a par_unit should be locally replicated, with a distinct copy being included

in each instance of the par_unit. This creation of distinct instances of par_unit

state avoids the redundant state problem.

While there is no fundamental reason for disallowing state in the specification of

a par_unit, it is convenient to allow state only in the body. State in the body is

readily accessible via subprogram calls, and the absence of state in the specification

simplifies the translation process.

The creation of multiple instances of library level par_units could be accom-

plished by several different methods. First, as in [7], the language syntax could be

extended to syntactically allow par_units as types, access variables to par_units and

use of the allocator or declarations to create instances. The following sample of code

illustrates the idea.

Illustration A

par_unit type B is ...

type T is ...

end B;

In this case, B would be a library unit, similar in many respects to a generic package.

Instances of it could be created via the allocator, as for example,

type P is access B;

Pl: P := new B;

The configuration of P1 to a specific processor could be handled by adding a

logical processor ID to the allocation above, with a binding to a specific processor

occurring at link or load time. This might be the "purest" manner from a language

theory perspective, and is similar to what was done in AdaPT [7]

Alternatively, one could simply treat par_units syntactically much like packages.

That is, one could simply declare:

Illustration B

par_unit B is ...

type T is ...

end B;

13

=

m

w

v

_t

Specific instances could be created in any of three ways, two of which are outside the

language:

1. Make B a generic library unit and use generic instantiation.

2. Use a pragma to specify the [logical] sites on which instances of B are to be

placed.

:3. Use an external configuration tool to specify the sites on which instances of B

are to be placed.

In the second two cases, an additional mechanism would have to be developed to

specify, in a remote call, which instance of B was being called. While we are unaware

of an implementation doing this, we believe it is possible. One possible method will

be outlined later.

If one must be able to use private types with par_units, one must, as Ada 9X

does with Remote Call Interface Packages, allow type definitions within par_units.

In this case, the "types within types" problem arises. Strictly speaking, the types

within different instances of a par_unit should be distinct. The types within types

problem motivating this can be illustrated as shown below using the syntactic type

model of par_units given in Illustration A above:

TYPE WITHIN TYPE PROBLEM

type P is access B;

Pl, P2: P : = new B;

Pa: P;

Vl: P1.T;

SW: BOOLEAN := IN_FUNC;

begin

if SW then P3 := P1 else P3 := P2; end if,

declare

V3: P3.T;

begin

if V1 = V3 then - - legal if P3 = P1, illegal if P3 = P2

end;

end;

A similar problem can occur with the second model of par_units using generic in-

stantiation. In both of these cases, use of type conversion could resolve the problem,

though it might be required extensively.

14

u

= z

m

= =

v

F _

Alternatively, instances of B could be created using pragmas or a configuration

tool with a par_unit declaration as in Illustration B. There would then be no syntactic

mechanism for creating pointers to the different instances and hence no way to declare

objects such as V1 above corresponding to a specific instance of the par_unit. That

is, one could only declare a variable as X: B.T; there would be no way to specify a

particular instance of B from whose instance of the type would be used. The specific

example types within types problem given above could not then occur. However,

there is still a difficulty.

While commonality of a type across all instances of a par_unit might be exactly

what a programmer wants, it does create an inconsistency. Some entities resulting

from declarations in a par_unit (variable state) are distinct in different instances of

the par_unit, while others (types) are the same.

There is a perspective that resolves the disparity, however. [7] introduces the

notion of "conformance." Conformant units have the same specification, but differ-

ent bodies. Instances of par_unit created via pragmas or configuration tools could

be considered conformant par_units having the same specification, in which case

allowing types within the specification of a par_unit would cause no problems.

One might wonder if the notion of conformance might not also be used with

local replication, and thus eliminate the tagged type problem described earlier. The

notion of conformance was not defined for entities having state in their specifications

as normal packages may. However, if the general idea of identical specifications of

conformant entities were carried through, it would be inappropriate since conformant

instances of normal packages having state in their specifications would be expected

to maintain state consistency.

3.4.2 Par_units Embedded Within Some Context

The alternative to defining par_unit types at the library level is have them defined

within some other context, much as task types are in Ada '83. In this case, the

central issue is the relation between the par_unit and its context when instances

of the par_unit are created. The previous illustration of the hidden remote access

problem portrays the problem in its simplest form. More generally, one must be
concerned about the entire transitive closure of the context of the par_unit, including

all subprograms, variables, tasks, etc. in the context.

There are four basic choices, one of which must be chosen for each (or all) kind(s)

of referencable items (variables, subprograms, tasks, etc.) in the context of the

par_unit.

1. There is but a single instance of each object in par_unit context:

This is exactly the hidden remote reference situation described earlier for tasks.

It would be virtually impossible for a programmer to predict even gross charac-

teristics about the timing behavior of his/her program. This is almost assuredly

unacceptable from a user perspective. Furthermore, implementation is likely to

be difficult since it is not known until the time an instance of the par_unit is

%

15

= ,

'2.

created whether a reference is local or remote [9]. In the opinion of the authors,

this alternative must be rejected.

Replicate the context of a par_unit]'or each instance:

On the surface, this seems similar to the local replication of context discussed

above for library level par_units. However, there are very important differences

that make the replication much more difficult in this situation, if not an illusion

in the general case.

The context that must be replicated includes not only the state in the outer

scope of the par_unit and the transitive closure of applicable with clauses, but

callable entities as well. If callable entities were not included, then the calls to

callable entities from instances of the par_unit would be remote and the called

entity would either not know which instance of replicated state to use, or would

require some complex form of state passing.

Further, entities in the context of the par_unit can themselves be directly called

from without the par_unit. Indeed, in some cases instances of the par_unit

may only come into existence as the result of such an external call, as, for exam-

ple, if the par_unit is declared within a procedure, P. If P must be replicated

because it is in the outer scope of the par_unit it declares, then there are mul-

tiple instances of P and which one must be called to create the instances of the

par_unit? The whole process degenerates.

Moreover, the replication would have to take place at dynamically run-time.

Aside from being difficult to do, the process is likely to be slow, exactly the op-

posite of what one seeks to do. Finally, for embedded par_units, the replication

is likely to be quite counter-intuitive for programmers.

Without some further restrictions, this approach does not appear feasible.

F

m

3. Disallow the creation of objects in the context of a par_unit:

In particular, this means that no variables or subprograms may be declared in

any unit in the context of the par_unit. For par_units defined in arbitrary

places in a program, e.g., within a procedure within a package, etc., this is

very restrictive, and requires extensive compile-time checking unless there are

restrictions on where par_units may appear in a program.

4. Disallow reference to objects in the context of a par_unit:

While this is feasible from an implementation perspective, it is inconsistent with

current scoping rules.

In the opinion of the authors, none of these choices is acceptable for arbitrarily placed

par_units. That is, arbitrarily placed par_units, such as tasks, embedded within

16

m

v

an Ada program are an unacceptable way in which to achieve distribution or parallel

computation.

ttowever, if one places restrictions on where par_units may be declared, embedded

par_units become more feasible. In particular, consider the following restrictions on

embedded par_units:

1. Par_units may be declared only in library level units.

2. The unit declaring a par_unit may have no variable state.

:3. The unit declaring may include only' type_units in its context.

In this case, there is no variable state to replicate, and the checking that these con-

ditions have been satisfied is relatively easy to perform. Further, with only a few

other relatively minor restrictions, the unit containing the the par_unit definition

can itself be replicated on any machines that might need it, facilitating subsequent

implementation. This is close to the situation with Pure packages in the August,

1991 Mapping Specification for Ada 9X.

The process of creating a large number of par_unit instances and placing them on

different processors in the system is a major concern. It is highly desirable to be able

to do this in some parallel fashion. As this involves the same underlying mechanism

as some desirable operations in the library level par_unit case, the discussion of

par_unit creation is deferred to the section on parallel operations.

3.4.3 The Abstract Data Type View

The Abstract Data Type (ADT) view of par_unlts essentially reduces them to

type_units. The basic idea is to collect all state in an instance of a par_unit and

the transitive closure of its context clauses into one, possibly large, record, a type

for which is included in the par_unit declaration. An instance of this record then

provides the state for the par_unit. Creation of an instance of the par_unlt, then,

is simply the creation of an instance of the state record type and with the return of

a pointer to it.

Since instances are required on different machines, the pointer concept must be

extended to a record that includes at least a machine id in addition to the local

reference to the instance of the state. The following code segment illustrates the

definition of an ADT par_unit. See [7] for a complete description of this process,

which is actually a bit more complex than illustrated here because the AdaPT model

includes both partition and node types.

type MACH_ID is ... - - an enumerated type listing machines

package AN_ADT_PAR_UNIT is

type STATE_PTR is private;

type STATE is

MACH: MACH_ID;

17

REF: STATE_PTR;
end record;

procedure PAR_UNIT_PROC(...;S: STATE);
procedure CREATE(S: in out STATE);

private
type ADT_STATE; - - this is the compositestate type.
type STATE_PTR is access ADT_STATE;

end AN_ADT_PAR_UNIT;

Sincethe par_unit now has no variable state, it may be freely replicated on all
units needingan instanceof it. That canbe doneby a configuration processoutside
the definition of the language. Creation on an instanceof AN_ADT_PAR_UNIT
requiresa remotecall to the CREATE procedureon the machineon which the unit
is desired.

While the ADT model reducesthe AdaPT modelto standardAda or Ada 9X using
statelesspackages,distribution or parallel operation can only be achievedif these
units may be replicated ondifferent processors,and specific instances referenced. The

ADTs appear similar to type_units such as Pure packages. They differ, however, in

that they must be remotely referencable. Replication is not now a simple question of

optimization of communication, as all references to type_units such as Pure packages

are to local copies of these units. Though one could use a replicated stateful unit (such

as replicated RCIs), the whole idea of the ADT model was to eliminate state in the

specification.

One can conceive of a clever way to use type_units such as Pure packages to

implement ADTs, however, if one builds upon the idea of an intelligent communication

system. Subprograms in a Pure package could have an additional parameter of type

STATE which is defaulted to a value having some special "self" code for the MACH

component. Communication stubs could be provided that would check the parameter

of type STATE and determine whether a local or remote call was being made. Because

of the default for this parameter, local calls would not even need to include it.

Invocation of an operation of the par_type, e.g., PAR..UNIT.PROC, requires pass-

ing a pointer to the state object as one of the parameters to the operation. The

communication system must be able to examine the MACH field of the S parameter

and direct the call to the proper machine. This is quite possible if all ADTs are

constructed in the same manner, and this, in turn, is quite feasible since one may use

a pre-processor to automatically convert something like AdaPT into an ADT form.

The process of "flattening" a par_unit and its context to obtain the composite

state buffer is difficult to do by hand for large systems, but could easily be performed

by a suitable pre-processor.

3.5 Parallel Operations

A degree of parallelism is achieved by placing instances of par_units on different

processors in the system, each with its own thread of control. Communication among

18

them, however, then becomesan obviouspotential bottleneck. Additional efficiency
canbe obtained if part or all of the communicationcanbeparallelized. There are two
kinds of operationsin which attempting to achieveparallel communication is likely to

be effective. The first occurs when one program segment must perform the same call

to a set of par_units on different processors, such as might be done to initiate some

parallel operation. The second is the creation of a set of instances of some par_type.

Parallel communications can only be used effectively when the same message can

be broadcast to a set of processors. Effectiveness can be enhanced if no return is

expected. Furthermore, the mechanisms involved are much more complex if multiple

returns are received to a single broadcast. We thus consider first the case in which

there is no return.

3.5.1 Parallel Communication With No Return

L_

w

Case 1: Communication

In the case of parallel calls to a set of par_units, the lack of return messages

implies only in parameters. Such parallel calls can be handled by an extension of the

ideas used in the ADT example together with placing a degree of intelligence in the

communication system. We begin be defining a type for a set of MACHADs.

type MACH_SET is - - a set of MACHADs.

Then, if there is a procedure E in a par_unit PAR, its specification would appear

as follows:

par_unit type PAR is

procedure E("parameters" , MS: MACH_SET);

end PAR;

The code for PAR would be replicated on the processors in the system in some way

(the method is not of concern here). The compiler would be required to recognize

that references to PAR.E were remote and substitute communication stubs in place

of the actual procedure on the processor making the call. This kind of detection and

substitution has already been implemented in at least one of the trial implementations

of the Ada 9X distribution mechanism.

The communication subsystem must be intelligent enough to recognize that a call

to PAR.E with the parameter MS is actually a parallel call. It should broadcast the

call, and, since there are no parameters to be returned, immediately return to the

calling thread of control. The receiving part of the communication subsystem must

also be intelligent enough to recognize whether or not a received call is intended for

19

w

the machine on which it resides, ignoring it if it is not, and completing the call if it is.

The receiving communication subsystem has the information to make this decision

since it can compare its ID with those contained in the parameter MS. PAR.E itself

would not actually use the parameter MS.

MACH_ID was only used for illustrative purposes to show the fundamental idea.

In general, it would be a record containing whatever set of identifiers are necessary

to uniquely identify the called unit, which might include, for example, some form of

instance number local to the machine on which the instance resides as well as the

machine id.

Case 2: Process Creation

Parallel creation of par_unit instances might proceed by parallel calls to either

an explicit CREATE routine similar to the ADT example or an allocator in the run

time systems of the units on which the instances are to be created. The difference
v

between these calls and those discussed above is that the invoking program segment

will almost always need to have some form of identifier (value) for each par_unit

instance created so that it can reference the instance in the future.

If no return from the called units is allowed, then the invoking program must

supply the identifier (value). This means that the receiving unit must store the

identifier so that it can match incoming calls against it to determine if the created

unit is being called. This, in turn, means that the unit which creates the par_unit

instances must have variable state.

Since matters of state and types are key factors in determining what constraints

must apply to par_units, this conclusion is significant. For example, letting par_units

be task types, it means that this form of parallel creation cannot be used to create

remote instances of tasks in Ada 9X, i.e., it cannot be used for tasks whose types are

declared in Pure packages in Ada 9X because Pure packages may not have variable

state. Further, it could not be used with creation of tasks in Remote Call Interface

packages because RCI packages may not have task types in their specifications.

3.5.2 Parallel Communication With Return

One can conceive of a system that could handle return values from a parallel call.

The returns, of course, would have to be received serially, though the call could be

parallel. In concept, a parallel call with return could be constructed as follows:

The argument list to the called subprogram must include an out parameter

which is a SET of outputs. Each output variable must include a component

to hold the identifier of the instance of the called subprogram returning the

parameter. As in the case of no returned variables, the argument list must also

include a set, MS, of called instances of the subprogram.

Each instance of the subprogram provides an out value which is a singleton

set. This value must include a component that identifies the instance of the

20

w

w

m

subprogram providing the value.

• The client communication stub must await a return from each of the instances

named in the argument set MS, and place the result in the output set. It

returns to the caller only when a return value has been received from each

called instance of the subprogram.

Whether the called subprogram instances are user defined or a system allocator is

used is irrelevant. While such a scheme can be made to work correctly, it is obviously

less efficient than the no return case since there must be a serialized return.

A parallel communication scheme such as this with serialized return could, how-

ever, be used to create instances of tasks from Pure packages in Ada 9X. It eliminates

one half of the serialized communication that could occur in the creation of a set of

instances of tasks from task types.

4 Distributed and Parallel Computation in Ada

9X

The August, 1991 draft Mapping Specification addressed distribution and parallel

computation only briefly. Nevertheless, it does provide a base upon which a lim-

ited level of distributed and parallel systems can be built. We believe that some

minor modifications to the MS will significantly enhance its utility for programming

distributed and parallel systems. We present these recommendations in two levels,

graduated according to the degree of modification and enhancements involved.

4.1 Level of Least Change

At the level of least change we would suggest the following:

1. Allow active partitions to be replicated.

2. Explicitly recognize the instances of Remote Call Interface Packages as being

conformant packages.

3. Only allow parallel task creation (if any is allowed at all) from task types spec-

ified in Pure packages.

4. Either disallow the passing of tagged records as parameters in RCI calls or

disallow the use of 'CLASS tagged parameters, as suggested earlier.

5. Disallow the passing of tasks created from task types in the specification of Pure

packages as parameters in subprogram or entry calls.

6. Allow only a single Remote Call Interface (RCI) Packages per active partition.

21

m

The most important item is the ability to replicate remotely callable entities. This

facilitates use of the ADT model for distribution (as an alternative to the use of Pure

packages as described above), management of fault tolerance through the ability to

create backup units, and the management of parallel processing with minimal change

1:o the language. Each instance of an active partition must include not only a separate

copy of the RCI package within it, but a locally replicated copy of everything, except

for other RCI packages, in the transitive closure of the context clauses on both the

specification and body of the RCI. Allowing only one RCI package in a partition is

not essential, but will be a convenience in addressing different instances of an active

partition.

Implementation designed configuration tools and utility procedures can be ad-

joined to the implementation defined communication facilities to effect the distribu-

tion and communication among the RCI packages instances.

As the replication of RCI packages creates a "types within types" issue, the matter

must be resolved in some way. The simplest and most natural way is to recognize

the instances of RCI packages as conformant instances. With this decision, nothing

special need be done. The types in the specification of an RCI would then be the

same for all instances.

The restriction on tagged types as parameters in RCI calls eliminates the problem

of type matching in normal packages included in multiple partitions.

As pointed out above, an attempt to dynamically create parallel instances of tasks

from task types defined at arbitrary levels in a program is fraught with difficulties.

The worst difficulties can be avoided if the creation of parallel tasks is limited to

tasks created from task types appearing in the specification of Pure packages. Pure

packages have no variable state, and can be replicated on each processor in the system.

Thus, the context of the tasks created can be easily made locally available to them.

Various implementation provided mechanisms can then be developed for creating and

referencing parallel tasks, such as the one outlined above.

Passing task objects across machine boundaries will cause considerable imple-

mentation difficulty as well as making it difficult for a programmer to anticipate the

behavior of his/her program, and should thus be disallowed. As the only task types

visible across machine boundaries are those in Pure packages, disallowing the appear-

ance of tasks of these types in subprogram or entry calls is sufficient to prevent the

problem.

4.2 Level of Moderate Change

The items recommended at this level could easily be considered independently. They

are grouped together simply for convenience. At the level of moderate change the

following suggestions are made:

1. Disallow the presence of non-private types in the specification of RCI packages.

2. Disallow the presence of task types in the specification of Pure packages.

22

w

w

:3. Add a pragma REMOTE_CALL_PURE to designate Pure packages for which

communication stubs are to be generated.

There is really no need to include non-private types in the specification of RCI

package's, as they can be provided through Pure packages. If they are eliminated,

the issue of "types within types" goes away and does not have to be considered at all.

Similarly, it is possible to achieve parallelism without having task types in the

specification of Pure packages through use of replicated RCI packages. As described

earlier, a call (perhaps broadcast) needs to be made to a remote unit of some form

to create a parallel instances of a task. Whether this task object is created from a

Pure package or from a task type within the body of an RCI is immaterial. Calls

to a task within an RCI body can easily be handled via a procedure declared in

the specification of the RCI. There is thus very little difference from a programmer's

perspective which method is used. The implementation of parallel tasks via Pure

packages is redundant, and could be deleted as it complicates the implementation.

It should be noted that with the use of RCI's, tasks could also be declared directly

in the body of the RCI package and and elaborated when the RCI is. In this case,

the programmer could simply call the task (indirectly via a procedure) to start it,
and would not have to create it.

The omission of task types from the specification of Pure packages eliminates the

need for any concern about the programmer trying to pass task objects as parameters.

It is not strictly necessary to add the pragma, but it might be more consistent to

do this in the distribution annex rather than let implementors choose their own name

for it.

5 Summary and Conclusions

The major language issues impacting distributed and parallel programming have

been reviewed, and some principles upon which distributed/parallel language sys-

tems should be build suggested. Based upon these, alternative language concepts for

distributed/parallel programming have been analyzed.

The most fundamental conclusion is that there is a need for replication of li-

brary level units for both distributed and parallel language systems, and that this,

in turn, is most properly viewed from the perspective of a typing model. It is not

necessary, however, to introduce syntax into the language to accomplish this as exter-

nal configuration tools, in conjunction with appropriate communication capabilities,

can achieve the necessary effect. Replication of library level units would facilitate a

general Abstract Data Type model of distribution that permits implementation of

powerful distributed programming mechanisms, as well as enabling distributed and

parallel programming in general.

It has been previously suggested that it is useful in some circumstances to have a

typed language construct embedded within program units (i.e., something task-like)

whose instances can be distributed. Our analysis reveals that considerable care must

23

.w

be taken in developing the conditions under which this is possible. We have shown

that only in limited cases is it feasible, though in those cases, it may be quite useful.

In addition, we have sketched a communications functionality that would augment

language mechanisms to support parallel and distributed operations.
Finally, we have suggested a number of specific minor changes to enhance the

suitability of Ada 9X for distributed and parallel programming, and avoid major

difficulties that have been encountered in previous distributed Ada implementations.

w

References

[1]

[2]

[a]

[4]

Office of the Under Secretary of Defense for Acquisition, Washington, D.C. Ada 9X

Project Report, Ada 9X Mapping Document Volume II, Mapping Specification, August

1991.

R. Volz, T. Mudge, G. Buzzard. and P. Krishnan. Translation and execution of dis-

tributed Ada programs: Is it still Ada? IEEE Transactions on Software, Special Issues

on Ada, 15(3):281-292, March 1989.

Richard A. Volz. Virtual nodes and units of distribution for distributed Ada. In Ada

Letters Special Edition, Vol X, NO 4 - 3RD International Workshop on Real-Time

A da Issues, 1990.

Raymond Scott Waldrop. Distribution of Ada using adapt in a heterogeneous envi-

ronment. Master's thesis, Department of Computer Science, Texas A& M University,

1991.

[5] R. S. Waldrop, R. A. Volz, S. J. Goldsack, and A. A. ttolzbacher-Valero. Program-

ming in a proposed 9X distributed Ada, May 1991. Status report, subcontract #074

cooperative agreement NCC-9-16.

[6] R.A. Volz and T.N. Mudge. Timing issues in the distributed execution of Ada programs.

IEEE Trans on Computer for publication in special issue on Parallel and Distributed

Processing, C-36(4):449-459, April 1987.

[7] A. B. Gargaro, S. J. Goldsack, R. A. Volz, and A. J. Wellings. A proposal to support
reliable distributed systems in Ada 9x. Technical report, Texas A&M University, 1990.

[8] Rakesh Jha, J. Michael Kamrad II, and Dennis T. Cornhill. Ada program partitioning

language: a notation for distributing Ada programs. IEEE Transactions on Software

Engineering, 15(3):271-280, March 1989.

[9] R. A. Volz, P. Krishnan, and R. Theriault. Distributed Ada: case study. Information

and Software Technology, 33(4):292-300, May 1991.

[10] Ron Theriault. Telesoft distributed Ada configuration tool. Department of Computer

Science, Texas A&M University and Telesoft Corporation, December 1991.

[11] W.H. Jessop. Ada packages and distributed systems. SIGPLAN Notices, February

1982.

24

= :
w

[12] A. A. Holzbacher-Valero, S. J. Goldsack, R. A. Volz, and R. S. Waldrop. Transforming

AdaPT to Ada. August 1991. Status report, subcontract #074 cooperative agreement

NCC-9-16.

[13] Richard Volz, Ron Theriault, Gary Smith, and Amanda Mayo. Telesoft distributed Ada

configuration tool, distributed Ada langua9 e conventions. Department of Computer

Science, Texas A&M University, December 199I.

e

w

w

25

